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ABSTRACT 

This final report summarizes the activities of Invariant Corporation in its support 

of the Army Aviation and Missile Command (AMCOM) under contract DAAH01-03-C- 

R129. The effort was a Phase I SBIR entitled A02-158, Infrared Seeker Performance 

Metrics. The report details the technical effort performed to include identification of 

infrared sequences and the ground-truthing of these sequencies. Signature metrics were 

identified and developed to process statistical differences between target and clutter. 

Software was developed to execute the metrics and was a deliverable under this effort. A 

tracker and detection prediction methodology study was identified and a validation plan 

for this methodology is detailed. This effort was also supported by Dynetics which was a 

subcontractor to Invariant Corporation on this effort. 
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President 
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1. Introduction 

Advances in imaging infrared (IIR) technology and demonstrations of this 

technology as a capable means of target discrimination, automatic target recognition 

(ATR), and auto-tracking have led to the development of numerous IIR weapon systems. 

No doubt, as the technology continues to improve, additional Department of Defense 

(DoD) time and resources will be spent in an effort to improve the detection, 

classification, and guidance capabilities of US assets. Although excellent analysis tools 

exist for describing the imaging sensors themselves, there are no adequate methods or 

tools currently in existence for characterizing the performance capability of the sensors 

against targets in a variety of backgrounds. Thus, new and improved detection and 

tracker algorithms continue to be developed, but with no technique for predicting their 

potential performance enhancement. 

Performance metrics and related analysis tools have been developed for man-in- 

the-loop applications that adequately match predicted performance with human 

perception test results. While similar metrics have been developed based upon auto- 

detection and tracker test results, a reliable method using these metrics in predicting the 

performance of trackers and auto-detection algorithms for a variety of targets in diverse 

backgrounds has not been realized. As the US Army moves forward in its use of IIR 

technology, development of a tool capable of predicting sensor performance is essential 

for optimizing algorithm development and seeker system design. From a defensive 

standpoint, as foreign armies implement IIR capabilities into their weapon systems, such 

a tool is also necessary in mitigating risk to US ground vehicles and troops. 

2. Technical Objectives 

The overall objective of this effort was to investigate and develop metrics and 

methodologies which can be used to predict the auto-detection and tracking performance 

of imaging infrared missile seekers that employ staring focal plane arrays, and develop a 



plan to validate the performance metrics.  The specific objectives of the proposed effort 

are in Figure 1 and are listed below. 

1. Identify a set of infrared image sequences that represent a variety of background 
conditions, sensor resolution, and sensor sensitivity. 

2. Identify existing signature metrics and formulate new ones. 

3. Develop a software tool to use for calculating signature metrics. 

4. Ground-truth the image sequences identified in objective 1 and calculate the 
signature metrics for each image sequence. 

5. Develop a methodology for predicting auto-detection and tracker performance 
based on the signature metrics. 

6. Develop a plan to validate the performance metrics. 

r Phase 1 

Identify Sources 
of IR Images 

Divide 
Sequences into 

Two Sets 

Ground Truth 
SetllR 

Sequences 

IdentiP/ 
Existing 
Metrics 

Develop Metiic 
Computing 

Tool 

Add New 
MetHcs 
to Tool 

Compute Metrics 
Using Metric Tooi 

Fonnulate 
New Metrics   | 

Develop Methodology for 
Performance Prediction 

Develop Plan for Validation 
Metrics in Phase 2 

Figure 1. Phase I Block Diagram 
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3. Technical Work 

3.1    Infrared Image Sequences 

The first portion of this effort was to identify a comprehensive set of infrared 

image sequences for metric processing and then later in the Phase II to support the tracker 

and Autonomous Target Detection (ATD) prediction tool validation. The goal was to 

identify sequences with various backgrounds, sensor sensitivity, and resolution to ensure 

the fumre analysis results were not biased to just one sensor type or a single 

environmental condition. Parameters that cause variations in background, sensor 

resolution, and sensitivity were identified and this information was recorded for each 

image sequence selected. In all, 714 image sequences were identified. The sequences 

are collected from both tower test and captive flight tests (CFT). Each sequence contains 

anywhere from 300 to 8000 images. Most tower test sequences have targets at a constant 

range, while the CFT sequences begin at an initial range and then close on the target. 

The sequences were selected from several sensors that have different resolution and 

sensitivity. First, let's summarize the weather conditions for the images sequences 

selected. 

For each sequence, various weather conditions were recorded while the data was 

collected. These parameters varied somewhat depending on the location of the test and 

the instrumentation that was available. The main information recorded was location, 

time-of-day, season, ambient air temperature, relative humidity, parametric pressure, 

wind speed, wind direction, dew point, and precipitation. At some sites, soil temperature, 

visibility, and solar radiation were also recorded. All weather related parameters are 

stored in a database that is a deliverable of this Phase I. To show variability, some of 

these parameters are plotted below. Figure 2 is a histogram of the ambient air 

temperature of all of the sequences. There is a large concentration around 75 to 80 

degrees F, but several of the sequences were around 90 deg F and during some of the 

winter scenarios, there were some temperatures in the upper 30's. 
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Figure 2. Ambient Temperature Histogram 

Figure 3 is a histogram of the relative humidity of the selected sequences. There 

is a concentration of sequences with high relative humidity but there is also a large group 

of sequences varying between 30 and 100 percent. 
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Figure 3. Relative Humidity Histogram 

One of the most important aspects of an image sequence is the time-of-day in which the 

data was collected. Target to background signature will obviously vary greatly from the 

middle of the night to the heat of the day. Figure 4 shows the time in which the 

sequences selected were generated. Typically, most data is collected during the day, 

either morning or afternoon. But there is a decent percentage of this data that was 

collected at night. 

13 
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Figure 4. Image Sequence Time-of-Day 

The final illustration is the season in which the data sequences were collected. Figure 5 

identifies the number of runs collected during the different seasons. Unfortunately, there 

were no sequences collected during the summer months in the set that was identified. 

Nonetheless, several of the spring sequences were late in the season and had very hot 

summer-like conditions. 

This section lists just a subset of the weather conditions recorded during data 

collection. Additional weather parameters were stored and are available for each 

sequence in Appendix A. 
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Figure 5. Image Sequence Season 

Sensor sensitivity was the next important parameter to be considered when 

identifying the infrared sequences. This is usually measured by examining sensor fixed 

pattern noise and temporal noise or Noise Equivalent Delta Temperature (NEdT). For 

various reasons, these numbers are not always publicized. The sequences identified in 

this effort were generated by 4 separate sensors. The database delivered with this report 

identifies the sensors and gives a sensitivity performance range. NEdT for the different 

sensors varies from just below 50 mK to greater than 100 mK. 

Finally, sensor resolution is an important consideration that provides variation in 

the image sequences. Resolution includes spatial pixel resolution, spectral resolution, 

optical resolution (blur) and grayscale resolution. The sensors used varied from 512 x 

512, 384 X 512, and 256 x 256. Grayscale resolution was both 12 bits and 14 bits per 

pixel. The instantaneous FOV was different for each of the sensors as was the optical 

blur. All image sequences were collected using midwave infrared sensors. There are 

currently two requests for long wave infrared data, but at the completion of the Phase I, 

no LWIR starring focal plane array data had been obtained. But even though each of the 

sequences were operating in the midwave band, they all operated in a slightly different 
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sub-region of the 3 to 5 band. The variation in spectral band will generate variation in the 

resulting sequences. 

All sequences in Appendix A have been ground-truthed. The proposed Phase I 

option is to obtain and ground-truth additional infrared sequences. Due to pending CFT 

data collect, good long wave infrared (LWTR) sequences should be available by that time. 

3.2    Metrics 

3.2.1    Existing Metrics 

The existing metrics identified are traditional first order metrics that compare 

basic statistics between the target area and the background around the target. The three 

classical metrics are ATRSS, ATmodified, and SCRRSS- The standard statistics used by all 

three are mean temperature of the target area and background, and the standard deviation 

in a specific area. The metrics compare the statistics calculated in a target region to the 

statistics calculated in the background area. The similarities of these statistics are the 

basis for the metrics. The classical metrics all define the target area and the background 

area the same. The target area in which the target statistics are calculated is defined as 

the bounded box around the target. It is identified during the ground-truth process. 

Ground-truthing will be discussed in detail later in this report. An area around the target 

gate is evaluated for background statistics. Typically, the background area is the ratio of 

3 times the target height and 2.5 times the target width. The classical metrics are 

described in the following sections. 

3.2.1.1    Delta Temperature Root Sum Squared (ATRSS) 

This metric takes the delta temperature between the mean pixels in the target area 

and the mean pixels in the background area. It also calculates the standard deviation of 

the pixels in the target area (or). These two terms are individually squared, summed and 

then the square root of the sum formulates the ATRSS metric in Equation 1. 
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^'^Rss = \(^T)- + al Equation 1 

3.2.1.2   Delta Temperature Modified (ATmodified) 

This metric is very similar to the ATRSS metric. It calculates target and 

background statistics in the same regions of interest. The only difference is background 

clutter standard deviation is also calculated in the background area. It is subtracted from 

the target sigma before being squared and then added to the square of the delta 

temperature term. The addition of background clutter sigma is very important since 

background clutter will have a significant impact on tracker and ATA performance. 

Equation 2 describes the ATmodined calculation. 

A7:„„,,,., = 4{^Tf + {(j,-Gj Equation 2 

3.2.1.3    Signal to Clutter Ratio (SCRRSS) 

This metric has a strong dependence on the sigma of the clutter around the target. 

It is the classical signal to clutter ratio, but uses ATRSS for the signal term instead of 

simply AT. This is important since even in the absence of target mean difference from 

the background, target sigma alone is a significant contributor to the ability to track or 

detect targets. Equation 3 describes the SCRRSS calculation. 

5(7/j     _ ^TRSS Equation 3 
(Jr 

Classical metrics have been used for years, but to date still do not do an adequate 

job of predicting tracker performance.     Trackers respond to spatial structure and 
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similarities between the target and the background. These metrics do not allow for 

spatial frequency contribution and are purely first order statistics. They also process on a 

single frame of data. This is inconsistent with the auto-tracker process of using multiple 

frames of data to generate a history of the target information. Unless otherwise 

incorporated into time average filter or other custom process, temporal information is 

negated with these metrics. 

3.2.2   New Metrics 

The signal to clutter metrics described above are effective for a low level 

estimation of IR seeker performance. But often these metrics are not a good measure to 

describe the impact of the target-background signature has on the tracking process. More 

complicated image metrics are required to support this analysis. Tracker and ATD 

algorithm metrics can be developed that match more closely the image processing that is 

performed by the trackers being evaluated. Most imaging auto-tracker and ATD 

algorithms implemented in systems today are either company proprietary or classified. 

For this reason, no specific algorithms will be described. Instead, generalizations can be 

made with the knowledge of existing tracker and ATD implementations in open 

literature. 

Trackers are typically categorized based on the type of image processing 

performed. They all have one thing in common. They attempt to maintain track gates 

around the target of interest, and they attempt to maintain an aimpoint on some portion of 

the targfet. The first type of tracker is a hot spot tracker. This is the simplest tracker type. 

The algorithm processes the image, and finds the hottest pixel intensity. In some cases, 

the image is pre-processed with a boxcar averaging filter, to eliminate noise. But in 

either case, the hottest pixel in the scene or processed scene is classified as target. This 

pixel is tracked and the aimpoint is placed on the hot spot. 

The second type tracker is statistical based. Target and background means and 

sigmas are calculated. The tracker will evaluate the similarities between the statistics and 
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then classify pixels in the scene as target and background based on the calculation. 

Bayes' law is often used to perform the classification. 

The third type of tracker is a feature-based tracker. Typically, the image is pre- 

filtered using some technique. There are several filters to choice from, but the Sobel 

edge enhancement filter seems to be a popular choice. It does a very good job of 

enhancing edges in the image, and can be implemented using 2 3x3 convolution masks. 

This makes real-time execution possible in a wide variety of hardware platforms. Using 

the processed image, features are extracted using some segmentation criteria. A database 

of features is generated and maintained that describes characteristics of each of the 

features. This often includes feature position, magnitude, direction, size and velocity. 

The features are classified as target or background based on criteria that vary from tracker 

to tracker. These features are used to determine the track gate size and aimpoint. 

The final tracker is a correlation-based tracker. This type of tracker uses target 

template information, often generated by the gunner at lock-on, and maintains the track 

gate on the target. A correlation technique between the target template and the sensor 

image is performed to calculate the offset of the target in the scene from its previous 

location. There are several methods of performing the image correlation but given the 

same template and image correlation area, they will all generate similar results. 

ATD algorithms typically use a target template and search the entire image to 

identify features that match the template. The image is often preprocessed to extract 

edges or high frequency components. Many ATD algorithms use a process similar to the 

correlation-based tracker, but search for a good correlation in the entire image instead of 

a local region around the previous track location. 

The goal of this effort was to identify at least one new metric that closely matches 

the fundamental track and ATD algorithms described above. 
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3.2.2.1    Track Correlation Metric 

The track correlation metric (TCM) correlates between the current target template 

containing previous target information and a correlation search region. The search region 

is defined by a box around the target plus a correlation search area. Figure 6 shows an 

example of the search area outlined with the green box. The blue box outlines the area 

that defines the target template. 

Figure 6. Correlation Area 

The target template is a 2 dimensional image that has j rows and i columns. The 

correlation search area has n rows and m cols, n is 3 times the size of j and i is 3 times 

the size of m. The first step in this metric is to perform a normalized correlation between 

the correlation search area from (n, m) to (n+j, m+i) where n and m are initially zero and 
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the target template. To normalize the output, the mean and sigma value must first be 

calculated for the correlation search area. The mean is defined as pc and the sigma is Oe. 

Then the mean and sigma is calculated for the target template. These are defined as fi, 

and Ot respectively. The normalized cross correlation is defined by Equation 4. The result 

is output to a matrix called the correlation surface. This surface is populated with results 

as you change the starting points n and m to change the location of the correlation in the 

correlation search area. 

I./JC„-//,)x(>',.,,.„-//c) Equation 4 
corr„„ _ ^_  

Below are two examples of the resulting correlation surface. Figure 7 is the 

output of an InSb MWIR sensor. The target is hot with respect to the background and is 

outlined by the blue box. When performing a normalized cross-correlation with this 

input the result should be a correlation surface with a sharp peak. The target area is not 

well correlated with surrounding clutter, so the correlation surface values should be small 

off the correlation peak. Figure 8 shows the correlation surface result after processing the 

high contrast image. As expected, values around the peak in the surface quickly go to 

zero, and there are no secondary peaks anywhere in the surface. 
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Figure 7. High Contrast Target 

Figure 8 Correlation Surface of High Contrast Target 
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The next example is a low contrast target on somewhat correlated clutter. Figure 

9 shows the IR image with the target outlined in blue. After performing the normalized 

cross-correlation, Figure 10 shows the resulting correlation surface. As expected, the 

surface has the peak in the center resulting from the correlation between the target 

template, and the target itself. But the slope from the peak is less than the previous 

example, and then the values ramp back up away from the peak. This indicates clutter 

that is correlated to the target. 

Figure 9. Low Contrast Target 
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Figure 10. Correlation Surface of Low Contrast Target 

The trick now is to use tlie information from the correlation surface to generate a 

metric value that is the result of the target being correlated to the background. Since the 

surface is normalized, you will always have a peak value of the target template 

correlating with the target in the correlation search area. There are also values 

immediately around the peak that are a result of the target correlating with itself. Since 

the real interest is to determine how alike the target is to background, the values of 

interest are where the clutter correlated to the target template. Remember that the target 

template is a historical snapshot of the actual target, hence the perfect correlation. 

So to generate the metric value, the correlation surface away form the peak is 

examined. If there is a value anywhere in the correlation surface that has a large value 

that means it is highly correlated with the background. Lower values in the correlation 

surface indicate poor correlation. This is opposite from what is expected from a single 

metric value, since a 1 should indicate a high likelihood of distinguishing target from 

background, and a zero indicates the target and background are highly correlated. 
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Therefore, the largest value in the correlation surface that is outside the peak region is 

subtracted from 1.0. The result is the final metric value. 

Track Correlation Metric (TCM) = 1.0- correlation peak(outside center region)        Equation 5 

Figure 11 is an example of the TCM output. The target is high contrast just off a 

road as indicated by the red arrow. The metric value is around 0.8 for the entire sequence 

indicating there is a high probability of a successful track on this image sequence. 

Figure 11. Track Correlation Metric Output for High Contrast Target 

Figure 12 is another example of the TCM output. The target is low contrast and 

identified by the red arrow. The metric value is around 0.4 to 0.6 for the entire sequence 

indicating there is a medium to low probability of a successful track on this image 

sequence. 
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Figure 12. Track Correlation Output for Low Contrast Target 

The tracker correlation metric uses a target reference that is filtered over time. 

Since auto-trackers react to temporal changes in the target area, it was important that the 

metric is sensitive to temporal changes as well. This is true because they use historical 

target and background information for discrimination and classification. For this analysis 

of the tracker correlation metric, the target template was a stored representation of the 

target area from previous frames. If there is a significant change in signature from one 

frame to the next, the metric should perform well when predicting the effect on tracker 

performance. Since this metric uses the fundamental algorithms used by a correlation- 

based tracker, the metric value should do a fairly good job of predicting the performance 

at that class of tracker. 
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3.2.2.2   Sobel Metric 

Another metric under consideration for track analysis is based on the Sobel edge 

enhancement mask\ It is used to evaluate the ability to pull edges out of a particular 

scene. Equation 6 represents the. horizontal Sobel mask and Equation 7 is the vertical 

mask applied to the raw input image in an area around the target gate. These images are 

combined to form a magnimde image calculated in Equation 8. Currently, the target area 

of the edge image is compared to a background area to generate a signal to clutter ratio. 

This ratio is an indication of how well the filtered edges on the target compare to the edge 

features in the background clutter around the target. Future work will include a more 

exhaustive analysis of the persistence of the edge information. This will form the ability 

to predict how well a feature based tracker can maintain consistent edge features over the 

duration of track. The filtered images in Figure 13 illustrate the edge enhancement 

effects of the Sobel mask. 

-1 -2 -] 

0 0 0 

1 2 1 Equation 6 

Horizontal Sobel Mask 

-1 0 1 

■2 0 2 

-1    0    1 Equation 7 

Vertical Sobel Mask 

magnitude^ = ^Gx'+Gy Equation 8 
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Figure 13. Sobel FUter Results 

3.2.2.3   Bayesian Based Signature Metric 

The Bayesian metric describes the separabiUty of the target and background based 

on their statistical signatures (i.e. it is a relative metric). The metric assumes a ground- 

truth process has identified the target. The output of the metric is a value between 0 and 

1. Values near 1 represent targets that are very separable from the background and values 

near 0 represent targets that are very similar to the background. 

The Bayesian metric classifies pixels based on their similarity to statistical models 

for the target and background. The metric gate (MG) of the Bayesian metric has two 

components, the target pixel gate (TPG) and the background pixel gate (BPG). The TPG 

is centered on the target and matched to the size of the target. The BPG is also centered 

on the target but has larger than the size of the TPG (typical value of 3 times the TPG 

dimensions). The BPG excludes the area designated by the TPG. The target statistical 

model is formed based on the pixels inside the TPG. The background model uses only 

pixels inside the BPG. The mean, standard deviation, and correlation coefficient are 

calculated for the TPG and BPG to determine the bivariate normal distributions for the 

target and background pixels. Calculation of the correlation coefficient requires the user 
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to specify the offsets between the current pixel and its statistical pair. This offset is 

configurable (typical values are an offset of 1 in both the horizontal and vertical 

directions). These statistics can be established on a single frame or recursively updated 

over several frames to provide a means of memory and adaptation in the statistical model. 

Once the statistical models are established, each pixel within the MG can be classified 

according to its probability of belonging to either the background or target class based on 

Bayes' law. The metric is then calculated by the average success of correctly classifying 

target pixels as belonging to the target class and background pixels as belonging to the 

background class. 

The Bayesian metric classifies pixels within a region as belonging to one of two 

groups, target or background, based on Bayes' law. The two groups are assumed to 

follow bivariate normal distributions with characteristic parameters being the mean, 

standard deviation, and correlation coefficient. 

The MG is centered on the designated target position via the ground truth 

information and the mean, standard deviation, and correlation coefficient are.calculated 

for both the target and the background areas. On the current or subsequent frames (user 

configurable), the likelihood of each pixel belonging to either the target or background 

class is calculated. 

The TPG and BPG are each assumed to have pixel pairs that can be described 

with the bivariate normal distribution function. A spatial relationship defined by the 

horizontal and vertical offsets (XOFF and YOFF) is used to pair pixels together. The 

same offsets are used for the target and the background areas. It is important that the 

offsets not exceed one-half the target size so the majority of target pixels are paired with 

other target pixels. XOFF and YOFF are parameters specified by the user. 

To determine the target and background statistical parameters, rectangular gates 

TPG and BPG are used (Figure 14). The user specifies the size and initial locafion of the 

TPG and BPG. The centers of the two gates are located at the same position in the image. 

The pixels in the TPG are excluded from the BPG calculations; therefore, the BPG must 

be larger than the TPG. Within the gates, pixel pairs are formed and the statistics 
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computed. The statistics calculated are the mean pixel value, standard deviation, and 

correlation coefficient. 

Figure 14. Image With Target and Background Gates Superimposed 

Each pixel is classified by determining its target likeUhood, L,, in terms of the 

prior probabilities for the target and background, P{G, ) and P{GI, ), and the conditional 

probability distribution functions for the target and background, ^(viVj | GJ and 

P{v^V2 I Gj), as shown in Equation 9. The v^ term is the value of the current pixel being 

evaluated. The vj term is the value of the statistical pair to vj located XOFF and YOFF 

from the location of vj. The G, term is the group of target pixels designated by the TPG 

and Gj is the background pixels inside the BPG excluding the TPG. 

L,=P(G,|VIV2) = 
P{v,v,\G,)p{G,) 

P{v,v,\G,)p{G,)+P{vyV,\G,)p{Gt,) 
Equation 9 
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The prior target probability P{G,) is the ratio of the number of target pixels to the 

total number of pixels within the MG as shown in Equation 10. The background term 

P{Gh) is the ratio of the number of background pixels (MG-TPG), to the total number of 

pixels in the MG as shown in Equation 11. The values of P{G,) and P{G^) represent the 

probabilities of a pixel belonging to the target or background group without knowledge of 

its value. 

P{G,)= 
nxm 

NxM 
Equation 10 

PiG.h 
NxM -nxm 

NxM 
Equation 11 

Equation 12 and Equation 13 are the bivariate normal probability distribution 

functions for the target and background respectively and represent the probability of 

observing the values v\ and v., given that the pixels belong to a specific group. For a 

given pixel, the same spatial relationship is used to compute the target likelihood as was 

used to compute the distribution functions. Therefore, if the pixel and its pair have values 

near that of the target mean, the target likelihood is increased. Further, if the relationship 

between the pixel pair values is similar to that defined by the target correlation 

coefficient, the target likelihood would also be increased. 

/^v.vjc,: rCXfi- 

2;rorVl-p, 2^^(i-pr) 
((v, -M, Y - 2p, (^■, -M, h'l -M,)+(v; -//,) 

Equation 12 

/^v,vjGj = 
Ijra;,^- 

Equation 13 
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Based on Bayes' rule and the fact that there are only two groups, pixels with a 

target likelihood value greater than 50% are classified as belonging to G,. Using this 

rule, each pixel in the MG is associated with one of the two classes. 

The Bayesian metric (PBay) is the average success of correctly classifying target 

and background pixels. The success of correctly classifying target pixels is the ratio of 

correctly classified target pixels within the TPG (NCT) to the total number of pixels in the 

TPG (NTPG)- The success of correctly classifying background pixels is the ratio of 

correctly classified background pixels in the BPG (NCB) to the total number of pixels in 

the BPG (NBPG) as shown in Equation 14. 

P... = '''CT    '^TPG'^'^CB    '^ BPG Equation 14 

The Bayesian metric has a value of 1 when all target pixels and background pixels 

are correctly classified and has a value of 0 when all pixels are incorrectly classified. If 

all target pixels are correctly classified and all background pixels are incorrectly 

classified, the metric has a value of ¥1. 

In summary, the Bayesian metric is a means for quantifying the separability of 

target and background statistics. There are several parameters in the metric that are 

configurable such as the distance to the pixel pair (XOFF and YOFF) and the means of 

establishing the statistical model (e.g. models based on current frame or recursively 

updated). After exercising the metric against a large data set the configurable parameters 

should be studied in order to provide optimum performance. 

3.2.2.4    Signal to Clutter Measure 

.2 The Signal to Clutter Measure (SCM) is a metric that predicts the probability of 

detecting a target in an infrared scene. It was developed by Margaret A. Phillips and 

Richard F. Sims of the AMCOM Research, Development and Engineering Center.  This 
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metric takes the target signature information, as defined during the ground-truth process, 

and performs a correlation with the entire image. This is greatly different then metrics 

that compare target area statistics to local statistics around the target area. The process 

for performing the correlation is very similar to the TCM correlation process. It uses a 

snap-shot of the target area on a given frame, and performs a normalized cross correlation 

with the entire scene. Correlation peaks outside the target area are examined. If there are 

peaks inside the clutter area, then there are clutter features that could cause an ATD 

algorithm to get confused and mis-classify a portion of the background as target. If there 

are few or no correlation peaks in the clutter area, then the target signature is not 

correlated to the clutter and there should be a higher probability of a successful detection. 

The metric also examines the variance in the complete correlation surface. If there is 

variation in the correlation surface, this too would lower the probability of a successful 

detection. 

The output of the SCM is a floating point number between 0 and 1 which is 

consistent with the desired output since it is normalized. A 1.0 would indicate a good 

probability of detecting the target while a 0.0 indicates a very poor probability of target 

detection. 

3.2.3   Tracker Perforraance Metric 

In order to grade tracker and ATA performance, a tracker performance metric 

(TPM) is used that compares the ground truth gate to the gate generated by the seeker 

algorithms. The TPM used for this analysis independently compares the ground truth 

gate width and height to the tracker width and height. To perform this comparison, a 

normal distribution is generated using the center of the gate as the mean, and the gate size 

as the sigma of the distribution. The overlapping area of the two distributions is 

calculated. Equation 15 describes the TPM calculation where firk(x) and firk(y) are the 

normal distribution functions for the track gate x and y dimensions, and f„t(x) and fgt(y) 

are the normal distributions for the ground truth gate x and y dimensions. 
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'p»'=Z^/„.Wx/„W-Ii/J^)x/.,W Equation 15 

Since the area under each curve is 1.0, perfect overlap would result in a value of 

1.0. Any mis-match would result in a lower performance number. A normal distribution 

is used to weight the center of the gates stronger than the gate edges. The normal 

distribution will give more emphasis on the location of the center of the gate to ground 

truth, and less on gate size. Shown in Figure 15 are plots of two hypothetical 

distributions. The track gate width is smaller than the ground truth gate width but the 

gate height is very similar. The TPM is used to grade system performance that will 

ultimately be compared to the output of the metric tool. This information will be input 

into the neural network and used to draw a correlation between the actual performance of 

the tracking system and the metric values. 

Track Gate 
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Figure 15. Tracker Performance Metric 
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Since the metric values are a measure of how well a tracking system will perform 

given a certain target to background situation, the metric values should have some 

relationship with the acmal values as measured by the TPM. Or potentially a 

combination of metric values with associated costs values will be used to predict system 

performance. In an example case, the track correlation metric was used to compare 

against actual tracker performance for a specific infrared sequence. These sequences were 

processed using the track correlation metric and the tracker evaluated using the TPM. 

The track correlation metric data was compared to the actual system performance to 

determine if there truly is some relationship between this metric and actual tracker 

performance. Figure 16 shows this comparison. It is not expected that these plots would 

match exacdy, but you can see a good correlation between the actual tracker performance 

and the metric output. 

Figure 16. Track Correlation Metric Comparison to Tracker Performance 

Performance on the autonomous target acquisition algorithm is more 

straightforward. The output of the ATA is either an X, Y aimpoint somewhere in the 

scene, or an estimated gate size and location. In the case where the ATA calculates a 

gate size, the TPM mentioned above will be used to calculate the performance of the 
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system. A metric value of 1.0 indicates perfect gate placement relative to ground truth 

while a metric value of 0.0 indicates no overlap of the normal distributions. If the ATA 

outputs an aimpoint only, then the performance will be limited to a 1 or zero, depending 

on whether the ATA placed the aimpoint successfully inside the ground truth gates or 

not. 

3.3    Signature Metric Software Tool 

The product developed under this effort is the Metric Analysis Tool. It reads 

standard image sequence formats, as well as raw and/or binary formats. It is written in 

C++, and a standard metric object framework was established to facilitate the addition of 

metric routines in a plug-and-play type environment. It has the ability to calculate the 

metrics and output results in various forms including plots to the screen and in ASCII 

output files. In Phase II, it will interface with the performance prediction code developed 

under that effort. The metric tool has VCR-type commands such as play, frame step, 

rewind, and stop, to allow viewing of the image sequences as they are processed. The tool 

contains the ability to select a large number of image sequence to process, and be able to 

select the metrics that will be executed. It can also be run from the command line with 

no GUI interaction for overnight or batch processing. It was developed using platform- 

independent libraries compatible with Windows, Linux, and SGI platforms. 

The Metric Software Framework will provide an open-source, modular, scalable 

architecture for software development of additional metrics and interfaces to performance 

metric algorithms. 

The GUI version presents the user with an interface allowing for the creation, 

editing, and execution of image sequences analysis. The image sequences and the 

metrics to be calculated on these sequences are presented to the user in a list view format. 

There are also three data view windows contained in the main program window. These 

contain a VCR type viewer to enable viewing of the image sequence, a window 

displaying the metric values calculated for each frame in the sequence, and a graphical 

representation of the metrics calculated.  There are two dockable sub windows involved 
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in the presentation of the analysis configuration, the Project View and the Property View. 

An example of the GUI can be seen in Figure 

17. 

Figure 17. Image Metric GUI 

The Project View window shows a hierarchical list containing the image sequence 

file names; these are contained under the parent item named "Analysis". The second 

parent entry in this list, "Metrics", contains the names of the metrics to be performed. 

Image sequences and metrics can be added and removed from the list view 

independently. Chcking on an individual entry in the Analysis list will cause the detail of 

this image sequence to be displayed in the Property View Window. This action will also 

display the image sequence, if it exists, in the VCR window. If the analysis has been run 

previously and the output file exists, the metric data will be presented as well. 
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The Property View window displays the individual fields describing the size and 

location of the image sequence file. Also presented here are the required video file 

decoder, date of the run, output file name, output format, ground truth filename and 

ground truth file format. 

A menu bar in the main program window provides options for adding metrics to 

be calculated, the sequence to process, or a batch mode wherein the user specifies a 

directory and all of the sequence files in the directory will be added to the analysis. This 

batch mode also fills in the required information pertaining to the sequence, such as 

ground truth file, image size etc. 

The GUI also provides feedback to the user during analysis execution. This 

feedback is provided in the form of a progress bar showing percent completion of the 

analysis for the loaded file. If the file contains multiple sequences, a new bar is displayed 

as each sequence calculation is performed. The GUI is multi threaded, so the interface 

remains usable while the calculations are being performed. 

The console version of the analysis program is a separate application. This 

version of the tool requires the parameters to be specified either on the command line 

individually, or alternatively, aconfiguration file generated by the GUI can be used. This 

tool provides no inspection mechanism, but the output file can be examined in the GUI 

tool, or using a text or spreadsheet application. 

The configuration file generated by the GUI application is stored in the Extensible 

Markup Language (XML). Any text editor may be used to edit this file directly, however 

this is not recommended. Also, the file may be viewed directly using a web browser. 

While not the ideal method of manipulating the file, this ability can be useful when 

troubleshooting a configuration file. 

The metric tool software is deliverable as either a binary install or as source code 

with configuration files. The binary install is currendy only available for Microsoft 

Windows, version 2000 and above.   The source code install will allow the tool be built 
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for either the Windows or Unix operating systems. New metrics may be buih and used 

regardless of the type of install performed. 

Multi-platform build support is supplied through the use of Trolltech's qmake 

utility. This utility, along with the configuration files it uses, will be supplied with the 

installation. The qmake utility generatesa system appropriate make file. This make file 

can then be used to build the executable on the target platform. Detailed build 

instructions are supplied in the users manual. These instructions provide information 

about the environment variables required for a successful compilation. 

The GUI interfaces were built using QT by Trolltech Corporation. This is a 

multi-platform GUI application development environment. More information on QT can 

be found by visiting Trolltech's web site at http:://www.trolltech.com. This web site also 

contains detailed documentation on the qmake utility. 

The tool also makes use of Invariant Corporations Itools and Codec libraries. 

These libraries provide support for the Meta Class structure used in the metrics, the 

image sequence decoding, and various utility data structares used. Itools, Codec and the 

metric tool in general also make liberal use of the Standard Template Library. 

The source code install includes a set of template files demonstrating how an end 

user can extend the functionality of the metric tool by creating their own metric 

calculations. This is a fairly straightforward process, and is laid out in a cookbook type 

description in the metric tool user's guide. 

Several environment variables are required for proper execution of the tool. 

These variables and their values are described in the users manual. 

The metric tool software is composed of two major components and several 

supporting components. The two main components are the GUI object and the Analysis 

object. The supporting components are the video codecs, the analysis codec, and the 

metrics. 
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The GUI component encapsulates all of the operations necessary for displaying 

the GUI. This is equivalent to the "main" program in the console application. The GUI 

also contains image codecs, the viewer, and also the graph object. 

The Analysis component is the "heart" of the metric tool. This object encapsulates 

all of the items necessary to provide the metric objects the data they need to perform their 

calculation(s). The Analysis object also manages calling the metric objects and asking 

them to perform their calculations. The Analysis object contains a list of sub objects 

called sequences. These sequences contain all of the information associated with the 

image sequences. The required codec, the frame range, the ground truth file, the output 

file for the metric values, and the various formats of these items are all kept within the 

sequence. The Analysis object also contains a Ust of the metric calculations to be 

performed. 

The tool has been designed using object-oriented methodologies and implemented 

C-t-+. Each of the objects described above correspond to a class in C-i~i-. The metrics are 

implemented by taking advantage of the polymorphic characteristics of C++ allowing the 

addition of new metrics without recompiling the entire appHcation. The software design 

Unified Modeling Language (UML) object interaction diagram can be seen in Figure 18. 

40 



cnartiD imj*ieics_aasses 
ChartNaneCiaseaagram 
cnarfiypE UML Class OiaTam 
dart Stereotype  nClaes Jtag^mi 

,;*acl(valjw tJC-vKtor): vM 

■Hm<|M<TlcGUl 
-currefWnaMitflierame CSrrg 
-•CdStafiFranie: mt 
-•ecJNiiTiFrames nt 
-coaemtne QSmng 
-•ecjjoreFilenflnc: QStmg 
-BWzneMeonct: QLIMSDX 

-•ciectEaMetrtc!: OuiB» 
-dMcnpoor: QTetfEat 
-furOMt QTme 
-g-otraTnjTFlMrna'ne- QSrng 
-caitoROOiFiienamr ostnng 
-fMuttTaBg-QTao'e  

•wcKoFiiename: CSmq 

+«(](): V0(3 
ffatiFcrwanif >voic] 
*faff3ewwie() void 
■»rtep():void  

tnwaec Decoder 

«aau> 
■»vWeO<codtr 

■+nB#rari5(l imageType' 
■HiecocferFoffcodecName cttinov codec "MOeoDecoaer 

tnevWeoOecoda 

■^ieNew( t vow 
■HiieSB^et ^ void " 
■♦flieSBveMIfilenam* QElnngj ^\a 
■*fliePrrt(;:voic 
■*furvknaiy«nmetici: CUst3cyi v»a 
■tflieEMt; j void 
*pia>«chRun(mrFiiename OStmel voi3 
■tfieipnd«( \ vaa 
+ne:pCoriErts'j'*iri 
■rfieipyitt^) vac 
-H0arMeC1ce(]'VQ:R 
■HoaoMMetrcif J \^id 
■HWTc%eSfleaedM!tnci;)'/ad i 
-KemovcAiMmnf) vo3 
+«riwFiteCiiaiog='e(;: w c 
■KITH ): VW3 
-KltpuvResuCa^remits' «d: mad -i«<d 
•MjpaagG-aotivauw KJ-vetr^-*) sioid 

-descnpom: cimg 
-lUnOJte citnng 

■anaMif iler,ame sBnna 
^fcaoMeinctfmetnci tiaiiixcstnn^iivoio 
*nr(^w)ld 
+a9yBscKarury'*>FiWnans: cstnrg):vDC 
«oatWisfytti(Mename: lU. cttnng)' vaa                     i 
'HKiFMename^nienane: iia::citnng]: vod 
HeqC8fi9r«rre(catntcnRienan? uU ctmng) vad 
♦leqcdfcNametcocccName' ua!::c«nrg^ void 
+seqStartFrame[!tarf=farne: imj vOd 
■HKJKuffFramettnLmFrame*: intj i«d 
■Heqgn(tmF:ierBme(grt)LTidtnJhnien3m5- uu c«nng> vad 
■fOUttUFilepamefPlename utt :cinng) ■joa  

**naymco<Kc 

+open(llerBme cttnng) vad 
*iwi»TQ(Tilename cttnng): vo*d 
'•fMClArsfy9i(Bnatyiir- Araivw): t)OCl 
■KiO{»nafytis( ): vwd 
♦reteio vac 
■*doae( I vad  

cneiequeAce 

«Ctai«e 
♦faquwic* 

-filename: CStnng 
-cantrato^nename' CStnng 
-cooecName: CStirtg 
-itanFrame irt 
■nuTiFPafneS' nt 
-groufxtafliFiiename CStnng 
-OLipmFKerame. CStnno 

-mgtrtvame? KJ:map<cttinQnoJ> 

clmpem-ntaion ciasis 

-orrntHsaceri l void 
*C8icj!ae(5rajn(mif: RecBngjafQTxndTnjn&, imcframe- Tim8ge<iloat>St voro 
-KiijtiutMetrcstfflrDLt □eire3ms;'vDc: 
insbnce^) 

Ii£Ll ,  

tie mgMetn cMeoaas s 

■>«n(«MncGUCM» 
<Mecacia»» 

Figure 18. UML Object Interaction 

Development was performed using Microsoft Visual C++ .Net, version 2002. 

3.4    Ground Truth Process 

To process the image sequences using the identified metrics, ground-truth 

information of where the target is in the image had to be obtained or generated. This was 

accomplished using the Tracker Analysis and Groundtruth Tool (TAGtool) . The 

TAGtool runs under Windows and is a graphical software package (see screen capture 

shown in Figure 19) that was developed by Dynetics for AMCOM as a means of quickly 

and accurately ground-tiuthing infrared image sequences.   To further reduce the time 
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required to process sequences, a correlation capability was used that allowed the user to 

ground-truth every tenth frame. The auto-correlator used the user-generated information 

to determine the ground-truth data for intermediate frames. All image sequences 

identified under this effort were ground-truthed with this process. 

3e   yiev*   [*id« ■2pi.'05   Hdp 
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Figure 19. TAGtool Screen Capture 

3.5    Methodology for Seeker Performance Predictions 

3.5.1    Performance Prediction Methodology Problem 

Presently, a comprehensive framework for quantitative analysis of missile seeker 

designs does not exist. Although parameters/metrics such as 3D Noise Statistics have 

been used to make relative comparisons at the component and system level, the utility of 

existing metrics are often system specific and depend on the operational functionality of 

the sensor. 
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Classic performance predictions by FLIR 92 and NVTHERM have started with 

empirical information such as Johnson's criteria from 1950's and examined system 

performance as a function of system design and degradations including blur and noise. 

These Man-in-the-Loop (MITL) performance models have been continuously modified 

and updated to reflect state-of-the-art in sensors coupled with human operators. The 

maturity of the current NVTHERM models allows for relative comparisons of MITL 

systems with range errors of ±20% for probabilities of detection, recognition and 

identification. 

For Tracking and Target Acquisition Tasks, characterizing seeker performance 

based on system design and degradations is difficult at best. Algorithms used for these 

tasks often use different paradigms and information to process incoming images. As a 

result, particular image metrics are often not indicative of relative or absolute system 

performance for particular task such as Target Acquisition. The goal becomes to develop 

a process for finding and combing metrics capable of predicting task performance. In 

light of various feamres and image processing techniques available to accomplish a given 

task, useful metrics may vary by task and seeker design. 

3.5.2   Performance Prediction Solution 

In order for a metric or combination of metrics to be capable of estimating task 

performance, the metrics must be mapped to some performance measure. In the case of a 

single metric (say Delta T), standard curve fitting might be used to map a particular 

metric to a probability of detection performance. However, a combination of metrics may 

be more robust in estimating the actual performance. The key is having criteria for 

mapping. For a tracking task, the performance might be measured by the overlap of a 

target ground truth box and a system track gate. The desired end result would yield 

performance estimation for a particular scenario given a particular system and/or a set of 

degradations. 

A classical Neural Network approach provides a good framework for determining 

a mapping from a set of metrics to a desired performance measure. Input to the network 
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may be a set of metrics and/or features available to the system evaluator. A mapping is 

generated based on the performance measure used to grade a particular seeker task. 

3.5.3   Development of Basic Neural Network Approach 

To begin, a weighted sum of the image metrics might be used to produce an 

output as described by Equation 16 and visualized by Figure 20. 

>' = Z^'.^' Equation 16 

Wtights 

Figure 20. Linear Spatial Filter 

Here the mapping between a set of input vectors (image metrics) and desired 

outputs (performance measure) is known empirically for selected data. The task is to 

determine the weight vectors that map input vectors to appropriate output. 

An error signal may be defined as the difference between the weighted sum y and 

a desired output d generated from a specific performance measure (i.e. Track Quality). 

e = d - y Equation 17 

Minimizing the cost function defined in Equation 18 provides a basis for 

minimizing the mapping error between a set of image metrics and a performance measure 

(Track Quality). Here E is used to represent the statistical Expectation operator. 
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J =—E\e^] Equation 18 
2 

Minimizing Equation 18 with respect to the weights in Equation 16 leads to the 

well known Weiner-Hopf equations for determining the weights Wj. The Method of 

Steepest Descent is often implemented rather than solving the Weiner-Hopf equations 

directly for the unknown weight vector. 

Equation 19 
Y,WjE[XjX;^] = E[dXi^] ,       k = 1,2,..;P 

Weiner-Hopf Equations 

The Method of Steepest Descent determines weights via an iterative scheme 

illustrated in Equation 20 until changes are no longer significant. Here, n+1 represents the 

updated value of a particular weight and n represents the previous iteration. 

w^ (n +1) = w\ (n) + T] E[dk;^]-'^WjE[XjXi^ 
Equation 20 

, k = \,2,...,p 

However, the Expectation operator E in equations 17 and 18 indicates the 

statistical autocorrelation and cross-correlation between the input vectors and the desired 

output is required. In many cases these correlation functions are not known. The ieast- 

mean-square (LMS) algorithm addresses this limitation by implementing instantaneous 

estimates of the correlation functions. The net resuh leads to a modification of Equation 

20 as follows. 

\^\(n + 1) = w,(n) + Tj[d{n) - yin)] , k = \,2,...,p 

, Equation 21 where, ^ 

y(n) = Y,<n)jX(n)j 
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Again, this is an iterative technique that continues until changes in the weight 

vector are no longer significant. 

So far these approaches are applicable to linear filtering problems. For potential 

non-linear mappings of the image metrics to a performance measure, the LMS algorithm 

may be generalized via the backpropagation algorithm for Multi-layer Perceptrons. 

Figure 21 illustrates the general architecmre of a neural network with a single hidden 

layer. 

Input Layer Hidden Layer 
Output Layer 

Figure 21. General Multi-Layer Perceptron Architecture 
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Figure 22. Signal-Flow Highlights of Output Neuron j. 

The following relationships are illustrated by the signal flow graph in Figure 22 

for a neuron in the output layer. Development of the back propagation algorithm begins 

by defining an error signal for any neuron in a similar manner as for the LMS algorithm. 

ej(n) = dj-yj(n) 

where 

Equation 22 

ej(n) = error signal at neuron j; 

yi(n) = observed output at neuron j; 

dj (n) = desired out put at neuron j; 
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n = current input pattern 

The cost function is now defined as 

J=-E[e^{ny Equation 23 

and Cj represents the instantaneous error received after each input. 

The total input at neuron j is expressed as 

^'j{n) = Y,^'jii.n)y^{n) Equation 24 

The output at neuron j is a function of Vj(n), 

yj=(p{v.{n)) Equation 25 

where (p( x ) is the activation function of the neuron. 

Applying a similar methodology as in the LMS approach, the weight updates are 

proportional to the instantaneous gradient. 

37   _    dJ    dej{n)dyj{n) dv^{n) 

dwj-     de.(n) dXj (n) dv^ (n) 3viv (n) 
= -ej(n)(p'[Vj(n)]yj(n) 

Equation 26 

As before, the update rule is 

Wj.(n + l) = Wj.{n) + AWj. Equation 27 

where 
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AHV. (n) = -T] 
ay 

dwj, (n) 
= riSjin)yjin) 

and 

Sj(n) = ejin)(p'[Vjin)] 

An important element for calculating the update is the derivative of the activation 

function (p'[x]. The sigmoid function used by Rosenblatt is a smooth approximation of 

the step function. 

cp[x] = ^  Equation 28 
l + exp[-x] 

The sigmoid function is continuous for all values of x and ensures a well behaved 

derivative for the preceeding equations. 

5j(n) is defined as the local gradient. If neuron j is in a hidden layer, calculation of 

ej(n) is not straightforward. From Equation 25, 

dJ(n) ^ej(n) _    dJ{n) Equation29 

^'~    dej{n)dy^{n)~   dyj(n) 

For clarity. J is defined at the output layer as 

J=-Y.k(n)f Equation 30 

with the subscript k denoting an output layer as opposed to the input layer j. From 

Equation 28, the goal is to determine the gradient of the cost function with respect to the 

hidden neuron y,. 
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where 

ek = dk - (p[vk(n)] 

and 

Vk(n) = I Wkj(n) yj(n). 

Equation 31 

Simplifying, the gradient becomes 

ay(«) 
av. («)" X ^A ^"^^ [^'i (")^'V (") 

Equation 32 

Substituting back into Equation 31, 

Awji = ri5j(n) y,(n) 

where 

8j(n) = (p'[Vj(n)] I 6k(n) WkjCn) 

and 

5k(n) = I [ek (n)] (p'[Vk(n)]. 

Equation 33 

Synaptic updates depend on whether the neuron is in the output layer or a hidden 

layer. Output neurons use Equation 31, which is similar to the update rule used for the 
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LMS approach. Hidden neurons use Equation 32 where the local gradient depends on 

synaptic activity in the output layer as well as synaptic activity for the hidden neuron. 

The end result is an extension of the update rule for the LMS algorithm. For LMS, 

weighted inputs are summed at a single node or neuron. For the Multi-Layer perceptron. 

the error is 'propagated back' through the network to provide instantaneous estimates of 

correlation functions. The increased computation complexity provides robust 

performance for mappings that are not linear. 

3.6    Validation Plan 

This section presents the requirements and process for validation of the Metric 

Detection/Track Prediction model (MDTP). MDTP is a generic analytical IR detection 

and track performance prediction model described in this report and proposed as part of 

the Phase II follow-on. MDTP validation will be accomplished by comparing the 

model's metric based detection and track predictions to field test results utilizing tactical 

and generic tracking algorithms and validated analytical detection models. A 

comprehensive set of IR imagery, previously collected, has been identified under this 

effort that encompasses various sensor/seeker systems engaging an array of targets under 

various environmental conditions. This section describes the methodology for utilizing 

this data set and outlines the necessary steps for completion of the validation process. 

The result of the validation process will be a metric based detection and track 

prediction model, with supporting documentation, which can be confidently used as a 

tool for prediction of infrared (IR) seeker/sensor system detection and track performance 

for a variety of one-on-one engagement scenarios. This process should provide insight 

into the validation process and trade-offs associated with model fidelity versus 

complexity for the test scenarios under study. 

3.6.1    MDTP Metric Tool 

MDTP will utilize the collection of metrics identified in this report. It will use the 

metric software tool developed under this effort to calculate the metric values on new 
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infrared sequences. The flexibility of this framework allows the ability to quickly add 

new metrics if deemed necessary under the future effort. The neural network algorithms 

and performance prediction algorithms will be coded and integrated into the current 

framework. The tool will maintain the ability of running in the GUI or in a non-GUI 

batch configuration. The GUI will have an experiment planner that allows the user to 

select a large set of images for overnight or batch processing, and will continue to use 

platform-independent libraries compatible with Windows, Linux, and SGI platforms. 

3.6.2 MDTP Probability of Detection Prediction Methodology 

Developing a detection prediction model requires output from a representative 

algorithm, the metric calculations, and ground-truth information. For training purposes, 

the desired output of the network is set according to algorithm performance. For each set 

of metrics generated for an image, a performance value must be generated for driving the 

desired output of the neural network. For example, the output of the network may consist 

of nodes representing target detections, clutter decisions, and false alarm predictions. 

Once the weights of the network are determined, the output values of each node are used 

to predict how the detection algorithm will perform on a given image. Over an ensemble 

of test images, the neural network outputs can be used to calculate probability of 

detection and/or false alarm rates. 

A subset of images from the data sources described in the next section will be 

used to train the neural network. Once the network is trained for a desired sensor, metric 

inputs to the network can be used to predict system performance. 

3.6.3 MDTP Probability of Track Prediction Methodology 

Tracker performance predictions will be carried out in a similar manner as for 

detection. A generic tracker algorithm will be applied to various image sequences with 

success and failure determined by the methodology described in the validation section. 

Image metrics will be used as training inputs to a neural network while the success/failure 

results will provide desired network outputs and feedback for determining synaptic 

weights between each neuron. Once, training is complete, the network will generate 

outputs based on metric input. The network output will project the success or failure of a 
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tracker for a particular sequence. Probability of Track can then be calculated by 

observing results over an ensemble of metric inputs generated by a set of image 

sequences. 

3.6.3.1   Model Validation Methodology 

Validation is defined in DoD Instruction 5000.61 as "The process of determining 

the degree to which a model is an accurate representation of the real world from the 

perspective of the intended uses of the model." The Recommended Practices Guide 

(RPG) provided by the Defense Modeling and Simulation Office (DMSO) describes the 

essential steps for validating models and simulations as shown in Figure 23. 

Understanding the user's objective and characterizing the requirements are the foundation 

of the validation process because they will determine the accuracy threshold for declaring 

the results valid. This threshold will be determined in Phase I, and the validation process 

will be executed in Phase II. The results of tactical tracking algorithms against imaging 

data collected during captive flight and ground testing will serve as the available 

referents. Simulation may be used to fill deficiencies in a set of validation data. Signature 

metrics calculated from the same set of image data will be used to predict the 

performance of the trackers. The accuracy of the predictions will be determined by 

comparing the predicted and actual tracker performance. If the accuracy exhibits the 

required creditability of the predictions, they will be deemed valid. 
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Figure 23. Essential Steps for Validation of Models and Simulations 

MDTP will provide an approximation to the stochastic processes of target 

detection and tracking. Therefore, validation of MDTP will require a comparison 

between the deterministic results from the model and the discrete results from the test. 

The results from a single test event will have litde use in the validation process; however, 

a collection of test results can be used to calculate the probability that the target was 

detected or tracked for the given test conditions (i.e., m detections out of n trials). This 

calculated test probability will be compared to the predicted performance from MDTP for 

the same test conditions. Ideally, a collection of test cases in which all conditions remain 

constant would be used to calculate the performance probabilities; however, this is not 

practical. Some variation in the test conditions of the test cases will have to be allowed. 

Restrictions in the variability of the test conditions for a set of test results, the smaller the 

test set will be. A trade-off between test condition variation and test set size (number of 

test results) will be conducted using sensitivity analysis. The allowed variation within a 

test set, the desired number of results within a test set, correlation within a test set and 

other validation issues are addressed in this section. 
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This validation methodology is described in detail in the following subsections. 

A validation notebook will be used to document the steps taken and used for the 

validation final report. Figure 24 depicts the methodology used to validate MDTP. 
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Figure 24. Validation Methodologj' 

3.6.4   MDTP Model Validation 

Utilizing a portion (approximately half) of the imagery from the database, a 

distinct set of metrics will be identified that will provide a methodology to predict the 

probability of detection and the probability of track for a given a scenario, sensor 

characteristics, and environmental conditions. This first set of data will be used to 

develop and confirm the approach for developing the MDTP model. The second portion 

of the imagery database will be sequestered for use during the validation effort. 

Modifications to MDTP may be made prior to validation, based on the results of the 

metric analysis. Any modifications should be completed, and a baseline version of 

MDTP should be finalized prior to beginning the validation process. 

The validation effort will utilize the sequestered data, first to evaluate the 

performance of generic and tactical track algorithms for comparison to the MDTP model. 
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This effort will require a scoring, or assessment for each tracker/image sequence 

combination for the success or non-success of the event. A scoring methodology has been 

previously developed for tracker assessment and approved by AM COM. This 

methodology begins by attempting a track at the farthest range through endgame (approx. 

250m). Each frame is scored "in Track" if an overlap condition exists between the 

ground-truth box and the track gate box. If 90% of the frames within a sequence are 

tracked then the track event can be declared successful, if the last frame of data is not 

only in track, but the center of the track gate is located within the boundary of the 

ground-truth box. If the tactical or multi-algorithm tracker fails then the slant range to 

target is decremented by 250m and another trial is attempted using the same imagery 

sequence. This methodology can have the affect of correlating failed cases, especially if 

the cause is determined to be clutter near the endgame of the sequence. Therefore, for 

single algorithm trackers or constant slant range imagery data ( typically generic) an 

attempt to de-correlate the trial data is accomplished by performing track attempts on 200 

frame segments of the sequence, resulting in each trial being somewhat independent from 

the result of the previous trial. After a specific tracker has been run on a section of the 

data set, bounded by specified conditions under study, the overall tracker success is 

determined. This success will then be compared to the performance of the MDTP model 

prediction for the same data set to determine whether the model correlates well with the 

test results. 

The detection performance validation of autonomous detection algorithms, as 

compared to MDTP, will be handled similarly as the track algorithms. Selected single 

frame data sets will be used for both MDTP and ATR assessments and performance 

predictions will be compared for validation. 

Validation is a measure of comparison between the MDTP predicted performance 

and the actual performance achieved during testing of various track and ATD algorithms 

and perception based detection models for the imagery database. The basic validation 

process consists of obtaining data from pertinent sources, reducing and categorizing it 

where necessary, and compiling it in a table format for comparison purposes on a mission 

set basis. These mission sets will contain enough data points to be statically significant, 
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therefore the number of data sets and track algorithms tested should be optimally 

categorized to create this significance. The key comparisons to be made are Pd, and Pt for 

a given set of measured metrics. 

3.6.4.1    Sensitivity Analysis 

A sensitivity analysis will be used to reduce the dimensionality of the validation 

process. If each input into MDTP were treated as a variable, then the validation would be 

based on many discrete points with Httle or no replication. Sensitivity analysis can be 

used to reduce the number of input variables by making several of them constant 

throughout the validation process. This creates the replication required to achieve 

validation. As an example, it is anticipated that due to the short range for the IR sensor, 

the atmospheric transmission will remain nearly constant over a given slant range. 

It is desirable that the image sequence metrics be the only variations between 

trials. These metrics are used to determine the Pd and Pt, which are primarily derived 

from the intensity variations between target and clutter background; however, if a limited 

number of significant variables are introduced, the validation still can be performed. 

The sensitivity analysis will be conducted over the selected data set as part of the 

validation process. Clearly, if MDTP is relatively insensitive to a particular parameter, it 

is unnecessary to measure or segment that parameter to a high degree of precision. 

Therefore, the sensitivity analysis can be used to refine accuracy requirements for the 

processing of the imagery database. 

To conduct the sensitivity analysis, a series of pre-designed MDTP cases will be 

run. The selection of these cases will be based on orthogonal arrays to reduce the number 

of runs required. Once the initial MDTP run set has been defined and the most 

significant variables identified, a full factorial set of MDTP cases will be designed and 

run to characterize sensitivity to the most significant variables. 
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3.6.4.2   CALCULATING PD FROM Test Data 

The test data will be analyzed to determine the associated metrics, as well as the 

test conditions. In the simplest cases, the Pd or Pt will be determined based on m 

detections/successful tracks out of n trials: 

p =P=m/ 
d  ~ ' t n 

It is also necessary to develop an MDTP Pd and Pt to validate against the imagery 

data. The conditions and metric data will be fed into MDTP to develop these values. The 

scoring for the test data will be on a per-look or per-track basis, since the process 

assumes the target is completely within the field of view of the sensor for each image 

analyzed. 

3.6.5   Validation Criteria 

3.6.5.1    Graphical Analysis 

The track and ATD algorithms will be plotted alongside the MDTP results. This 

will allow for direct comparison between the two data sets. This is a simplified Turing 

test'*. In an actual Turing test, the two sets of data would be displayed with no distinctive 

markings. If an expert cannot tell the difference between data from the actual algorithms 

and from the simulation, then the simulation passes the vaUdation test. For this analysis, 

plots as shown in Figure 25 will be examined to determine if MDTP is close enough to 

actual test results. The crucial element in this comparison is that MDTP is not required to 

explicitly reproduce real-world results. It is only necessary for MDTP to reproduce 

results that are close enough that decisions made based on these results would be the 

same as those made based on actual algorithm results. 
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Figure 25. Graphical Comparison with Confidence Intervals 

3.6.6   Statistical Analysis 

There are several statistical techniques that could be used to validate MDTP. The 

primary statistical technique is to develop a confidence interval (CI) around each 

performance prediction. This technique is described in the following sections. 

3.6.6.1    Comparison to MDTP Results 

An initial approach to comparing test results to MDTP results would be to use 

hypothesis testing. The hypothesis to be tested would be: 

HO:      Pd.xiisT = Pd MDTP 

HI:     PdiHST'^Pd MDTP 

A level of significance would be chosen, and all of the tests would be run. An 

equivalent approach is to use CIs. This is equivalent because at the same level of 

significance, if a prediction falls outside of the CI, then it also fails the hypothesis test. 
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CIs have the advantage of allowing a more understandable form of presentation (as 

depicted in Figure 25). 

The CI represents the probability that the true performance prediction (Pd, Pt) is 

within the confidence limits with a certain probability: 

P{Lower Limit < Pd < Upper Limit) =l — a 

where a denotes the level of significance. 

The MDTP results will be compared to the calculated CIs, either graphically (as 

in Figure 25J or in tabular form. The determination of model validity is based upon 

whether the MDTP result falls within the CI. As an example, Figure 26 shows the 

possible results and the determination of whether the MDTP result is valid for each case. 

This figure also shows the possible sources of error. Note that it is impossible to know 

whether any of these errors have occurred without knowing the true Pd. However, it is 

possible to know the probability of committing each type of error. The method of 

calculating these probabilities is given in the following sections. 

3.6.6.2    Type I Error 

In the equation above, the level of significance, a is the probability of making a 

Type I error. A Type I error occurs when the hypothesis (HO) is true, but is rejected by 

the sample. Therefore a Type I error occurs when the CI should include the true Pd, but 

does not. For this validation, a Type 1 error is depicted in Figure 26. 

It is expected that not all MDTP results will fall within the CIs. Even if there 

were exact correspondence between MDTP and the test data, it would be expected that a 

certain number would fall outside the CIs. This number is based on the probability of 

making a Type I error. The probability of making an error given multiple, Ud, tests (CIs), 

is given by: 

P       =l-fl-a)"" ^ error      ^    V^     "•/ 
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where the level of significance, a, is the same for each CI. Since the number of 

errors is binomially distributed, the expected number of errors in na tests is anci. 

Therefore, if 100 95% CIs are developed, (cx= 0.05), then with perfect correspondence 

between MDTP and the real tests, 5 of the MDTP results would be expected to be outside 

of the CIs. 
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Figure 26. Validation Results and Types of Errors 
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3.6.6.3   CI Development 

This subsection describes how to develop the CIs required for vahdation. The use 

of the standard CI for the mean is not accurate, since it is a probability (or proportion) 

that must be analyzed. Therefore, the CI to be developed is a CI around a proportion. 

For large sample sizes, this can be approximated using the normal approximation to the 

binomial distribution^: 

Irnf^ _m) Ini Z',    m_ 

n      /2|        n n      72|        n 
where m is the number of detections in n trials, and ZaJi is the value of the 

standard normal distribution that has a cumulative probability of aJi. A rule of thumb for 

determining a sufficient sample size is given by Hicks as nPd > 4. For example, if the 

Pd was determined to be 0.5, then the sample size, n, should be at least 8. 

The exact CI for smaller n can be calculated using the binomial distribution. 

From Beyer^, given that the lower limit of the CI is represented by 0^ and the upper limit 

is represented by 0h, the lower limit is calculated such that: 

^2=i0e:(i-ej"- 
x=x' 

where a is the level of significance, x is the number of detections, and n is the 

sample size. A simplified form of the equation above is given by: 

X   -1 

^2 = i-lUJe:(i-e,r 
x=0 

The upper limit of the CI, 6h, is calculated such that: 

x=0 
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The ideal method of calculating the upper and lower limits, 6a and 9b, would be to 

solve the above equations for these two variables. This, however, is not a straightforward 

proposition. Fortunately, a simpler solution will produce the same results. This simpler 

solution is to iteratively modify 6a and 6b until the resulting cumulative binomial 

probabilities are equal to^^. Although there are tables that can provide these solutions\ 

with the advent of spreadsheets with powerful statistical analysis functions, more 

precision is available through the use of an Excel spreadsheet. Using the BINOMDIST 

function, which returns cumulative values of the binomial distribution, a spreadsheet has 

been developed that implements Equations 7-10 and 7-11. Using the Solver, Excel will 

iteratively modify values in cells (specifically 6a and 6b) until the target value for ^^ has 

been reached. The precision can be set to almost any required level. 

As an example of this methodology, consider 8 detections in 30 trials and an 

alpha of 0.05. This yields a Pd of 0.266666667. This example is taken directly from 

Beyer^. The CI given in Beyer (based on the tables) is: 

/'(0.123</'J< 0.459) = 0.95 

while the interval calculated using the binomial methodology and an Excel 

spreadsheet results in: 

P(0.12279481 < Pd < 0.45889365) = 0.95 

and the CI calculated using the normal approximation results in: 

P(0.108 <Pd< 0.158) = 0.95 

The CI calculation clearly provides more precision than is possible by interpreting 

the tables in Beyer and is much more accurate than the normal approximation. It is 

relatively straightforward to implement; therefore, it will be used to calculate the CIs for 

this validation. 
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Note that solving the binomial equations works only for m out of n successes 

while m is in the range 1 to n-1. For the endpoints, 0 and n, a slightly different version 

must be used. For 0 out of n, there is no probability associated with the lower limit; 

therefore, only an upper limit can be calculated. This upper limit must be based on 

cc instead of all to ensure a consistent CI. For n out of n, the lower limit must be 

calculated similarly based on a 

It is instructive to examine how the number of test results affects the vndth of the 

CIs. Figure 27 depicts the CIs calculated using the binomial methodology for the 

example above. The bar labeled "30" represents the CI for 8 detections out of 30 tests. 

The "90" bar represents 24 detections out of 90 tests, and the "300" bar represents 80 

detections out of 300 tests. In general, the more test cases used to develop the proportion 

(Pd, Pt), the smaller the CI. 
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Figure 27. CI Width versus Number of Test 

Another factor that affects the width of the CI is the resultant Pd for the test case. 

As the proportion approaches 0.5, the CI becomes wider. The smallest CIs occur as the 

proportion approaches low or high values (such as 0.1 or 0.9). This effect is illustrated in 

Figure 27. This figure shows the width of the CI determined for test results from 1/30 to 

29/30,1/90 to 89/90, and 1/300 to 299/300. 
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Both the number of tests, and the tested Pd have an effect on the CI width. 

Another important effect is on the Type n error, as will be shown below. 

3.6.6.4   Type II Errors 

The CI is based on the Type I error. This is the probability of rejecting a true 

hypothesis. A second source of errors that will be considered are Type n errors. The 

probability of occurrence of a Type II error is represented by 6. 6 is the probability of 

accepting a false hypothesis; therefore, it is the probability that the MDTP result is within 

the CI, but should be outside the CI. Again, this error is depicted in Figure 26. The 6 

error can be calculated based on how large a discrepancy is acceptable between MDTP 

results and test results. 
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Figure 28. CI Width versus Pd 

Given a true value for the Pd, it is possible to calculate the probability of 

accepting a false hypothesis based on the CI calculated from the test results. Given a 

lower and upper limit of 0^ and 9b, the probability of accepting a false hypothesis, 6, is 

given by: 
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p = p[e,>Pd>d^ 

where Pd is the true probabiHty of detection. Calculation of B is then made by: 

fi = p[pd<e,]-p[pd<e„] 

Assuming a normal approximation to the binomial distribution, a Z value for each 

of the above probabilities can be calculated by: 

z-   '-'' 
\pd(\-pd) 

Using these Z values, the probabilities to use can be determined with a standard 

normal distribution table; or with an Excel spreadsheet function. Thus, 6 can be 

calculated. 

For small sample sizes, determination of 6 must be based on the binomial 

distribution. All of the equations above are vaUd. Determination of the probabilities in 

The equation for |3 above (accepting a false hypothesis) is somewhat more difficult when 

the binomial distribution must be used. This is primarily because the binomial 

distribution is discrete, v/hereas the normal distribution is continuous. To determine 6, 

Pd is used as the mean of the binomial distribution. The number of trials, n, is the same 

as the number of tests used to develop the CI. The question becomes: what is the number 

of successes in the cumulative binomial probability equation? The number of successes 

is: 

S3=int(e^n)^^^Sb-int(ebn) 
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The calculation of B then becomes: 

This is a straightforward calculation in a spreadsheet using the previously 

described functions. Plotting the 6 error for all possible values of pd results in a curve 

known as the operating characteristic (OC) curve. Figure 29 shows the OC curve 

calculated for the example problem previously described. This curve shows that as the 

true Pd gets farther from the test Pd used to develop the CI, the probability of accepting 

that the true Pd is within the CI decreases. This curve yields a way of bounding the 

accuracy of the tested Pd. 

As can be seen in Figure 29 as the number of tests increases, the range of Pd with 

a high 6 error decreases. It is possible to say that the probability of accepting the 

hypothesis that the true Pd is within the CI when it is not becomes high only as the true 

Pd is very close to the tested Pd . From this figure, it can be seen that if it is desirable to 

detect a shift of 0.1 in the Pd, then the probability of making a 6 error is very small, 

-0.01. 

For this validation, a minimum detectable difference between the MDTP Pd and 

the test Pd will be selected. From this difference, the 6 error will be calculated and 

identified in the table of results for each comparison. 
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Figure 29, Effect of Number of Tests on OC Curve 

3.6.6.5   DISCREPANCY ANALYSIS 

It is impossible to predict all sources of error that would cause validation 

discrepancies. This subsection briefly introduces several potential sources of error as 

given in reference 4: 

1. Errors in mput data, 

2. Errors in procedure or use of the model, 

3. Errors in interpretation of results, 

4. Errors in programming, and 

5. Errors in design (algorithms). 

The error analysis will examine, in the order listed above, the respective errors to 

determine if they are systemic, random, or single point. It is important to note that usage 

and programming errors will be examined prior to algorithm execution. 
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A source for error that falls under item 2 (above) is the fact that all of the 

measurements are taken under test conditions, and that there are multiple looks over the 

same vehicles and terrain. A modeling assumption is that each of the looks is 

uncorrelated with prior looks. This assumption vidll be examined during data reduction to 

test its validity. 

As seen in Figure 24 there is a feedback loop in the validation process. This 

represents examination of errors and their sources and modification of MDTP inputs or 

algorithms to more closely represent the test results. 

The support the tracker performance methodology and the validation plan, a 

generic tracker must to identified and used as the actual tracker. Several portions of this 

report allude to the use of a tracker, but are left ambiguous. The next section details the 

actual tracker that vi'ill be used to support the Phase n effort. 

4. Tracker Algorithm 

A Modular Framework for Algorithm Development and Evaluation (MFADE) 

and the Ground Attack Target Engagement (GATE) algorithm was recentiy developed 

the Aviation and Missile Research, Development, and Engineering Center (AMRDEC), 

IR Branch. This effort was performed by Dynetics and it integrated algorithms for 

tracking ground targets. Initially, a Hot Spot, Bayesian, and Feature-Based Correlation 

(FBC) algorithms were to be considered for inclusion in the GATE algorithm 

MFADE can be run from its Graphic User Interface (GUI) or by using a 

command line version. It has hooks for acquisition, small-target, mid-course, and 

terminal algorithms and can support multi-channel algorithms to include hooks for data 

fusion. MFADE is implemented in a modular fashion to accommodate growth and 

expansion in the future. The modular design also can support insertion of real image data 

as well as integration with simulations that include seekers and/or scene generators. The 

GUI is focused on Microsoft OS, but all other code was developed to ANSI standards to 

maximize the portability to other computer platforms.   MFADE is vmtten in C-i~i- and 

69 



calls many subroutines that are in C. Lastly, there are hooks for interfacing with 6-DOF 

models or external data sources (e.g. gimbal data, telemetry, range to go, etc.). 

The primary algorithm within MFADE is the GATE algorithm which consists of a 

combination of the Anti-Median Hot Spot (AMHS) track algorithm, the Anti-Median 

Geometric Centroid (AMGC) track algorithm, a re-centering algorithm, and the Feature 

Based Correlation (FBC) track algorithm. The primary mode for the algorithm is to start 

in the AMHS tracker. The imagery is filtered using an Anti-Median (AM) filter of a sub- 

image around the target area. The AM filter tends to enhance hot and cold spots on the 

target while suppressing extended bodies such as roads, poles, trees, and so on. The 

GATE algorithm continues in the AMHS mode, each time checking to see if there is a 

predominate HS (in the AM filtered image) that is much higher than the surrounding 

background. The HS inside of the track box must be 7 background sigmas above the 

mean background level (measured in a background box surrounding the track box). If the 

HS intensity ever falls below this level, the GATE will transition to a re-centering 

algorithm then to a Sobel AMGC algorithm. 

The re-centering algorithm is accomplished using a Sobel Geometric Centi-oid 

(GC) routine. First, the image is filtered using a Sobel routine. The Sobel filter is a 

gradient operator that enhances the rate of change in the original imagery, which 

accentuates the edges or high frequency content of the image. The idea is to highlight the 

target edges before performing a GC track on the image. This is repeated for 25 

consecutive images in an attempt to walk the track gate onto the center of the target if it 

had previously been offset because of AMHS tracking on a hot spot. On each frame, the 

image is filtered with the Sobel filter, then the top 12% of the pixels within the track gate 

are used to geometrically center the new track box. Note that this re-centering algorithm 

is used again in the transition to FBC from either the AMHS or the AMGC. 

The Sobel AMGC algorithm is a tracker that operates on an image that is first 

Sobel filtered, then AM filtered, as its name implies. The Sobel AMGC algorithm has 

demonstrated capability to track targets that do not have a prominent hot spot on them, 

such as the cold side (right side) of a T-72. 
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The final track algorithm that is invoked is the FBC algorithm. A transition to a 

re-centering algorithm is performed first followed by the FBC algorithm. The transition 

occurs when the track box has more than 750 pixels on target. For the AMS seeker in 

narrow field of view, this occurs at a slant range of approximately 1000 meters. The FBC 

algorithm uses a reference template to correlate with each succeeding image to locate the 

target and center the track box on the target. Additionally, the FBC uses a feature 

extraction and a scoremap to allow processing and correlating on a smaller portion of the 

image about the track box that incorporates only features that are persistent frame-to- 

frame. This results in fewer calculations and completing the processing more quickly. 

The FBC algorithm in GATE has been improved from its predecessor in ISAT for better 

performance in endgame. The template is updated more often, and the template is 

magnified, as needed, when the track box is growing at high rates, such as during 

endgame. 

The MFADE and GATE were developed as government owned and operated 

source code and algorithm. All results can be openly published. And since it is a robust 

tracker and should represent a typical tracker used for missile seeker terminal homing, it 

will be used as the system tracker in the methodology implemented in the Pending Phase 

n effort. 

5. Conclusions 

In conclusion, all requirements for the completion of the Phase I SBIR have been 

met. A large set of infrared image sequences have been identified, ground-truthed, and 

processed with the metrics. Several metrics have been identified and developed that will 

support future analysis and the Phase IT effort. A modular software metric tool has been 

developed that will read image sequences of any format, and process the sequences with 

the user selected metrics. The metric tool is designed for ease of adding additional metric 

algorithms as they become available. A comprehensive process for taking the metric 

outputs and comparing them to actual tracker performance for the training of a neural 

network process has been defined in some detail. And a comprehensive validation plan 

to prove the viability of the performance model, and then ultimately the use of the tool by 
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the community has been identified. The actual tracker that will be used for the validation 

has been identified and has been approved for use. And the proposed phase I option will 

allow the addition of MWIR and LWIR image sequences and ground-truthing of these 

sequences for use in the Phase H. All processes are defined and ready to take this effort 

to the next level. Clearly the feasibility of a performance prediction capability for auto- 

tracker and ATD systems has been demonstrated and justifies the continuation and award 

of the Phase n effort. 

4 

5 
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1.   Introduction 

The Invariant Corporation ImgMetrics program enables the user to perform 
various metric calculations on an image sequence. The metrics are calculated on a "per 
frame" basis, resulting in a set of metric values for each image contained in the given 
sequence. 

The tool is extendable by allowing for end user's to create their own metric 
calculations. The tool is also versatile in that the set of metrics calculated for each 
analysis can be easily changed between runs. The list of sequences on which to perform 
these calculations may also be added to and deleted from easily. 

The tool may be used to configure the analysis, run the configuration to calculate 
the metrics, and finally, to inspect the results of these calculations. The tool provides 
three views for the inspection of the analysis runs. These are a VCR type viewer for the 
image sequence, a window showing the exact values calculated on a frame by frame 
basis, and a graphical representation of the values calculated presented over the range of 
the sequence. The graph allows for the selection of up to five different metrics to be 
graphed. The graphs for each metric are distinguished by usmg different colors for the 
plot lines. 

There is also a version of the tool which provides only the ability to run the metric 
calculations. This tool runs in a command Ime mode and produces a text output file. 
This file is saved in CSV format and may be viewed using a text editor or spreadsheet 
program, such as Excel. The command line version takes either all of the parameters 
listed individually on the command line at program invocation, or alternatively, will read 
these values from an XML file. This file can be generated by the GUI version of the tool, 
or by hand using any text editor or and XML editor. The format of the XML file is 
provided in the appendix. 

2.   Installation 

A self extracting executable install file named ImgMetric_Setup.exe is provided 
to install the ImgMetrics tool. This install file has been created using Inno Setup. For 
more information on Inno Setup please see httD://www.irsoftware.org/isinfo.php. 

The install file contains three install options. These options are "Source and 
Configuration files", "GUI Version", and "Console Application". 



2.1    Prerequisites 

There are a few pre-requisites to the build process. One of these is the QT 
development environment. QT is a multi platform graphical user interface programming 
environment and was used to build the GUI version of the tool. QT is a product of 
TroUtech Corporation and more information, as well as directions on obtaining QT can be 
found by going to TroUtech's web site at http://www.trolltech.com. 

The GUI version also uses the QWT library.  The QWT library is used to 
generate the graphical representation of the metric values. This API can be found by 
going to this website, http::// http://Qwt.sourceforge.net/index.html. The website will 
provide fiarther information on the use of the QWT library, and also instructions for 
downloading and mstalling the QWT API. 

The console and GUI version of the tool also use the Xerces XML API. More 
information about Xerces and instructions on how to obtain the API can be found by 
going to this website, http:// http://xml.apache.org/. 

Each section contains a list of environment variables which must be added to the 
target system and then to that system's path environment variable. There are exceptions 
to these lists if the target system is already using Invariant's codec and ITools libraries. 
If this is the case, these variables will already exist on the system and should also be in 
the path. If it is known that this is the case ignore the directions for setting the codecs 
and ITools environment variables. 

Another thing to be careful of, if the libraries already exist on the target machine, 
is version incompatibility. It may be necessary to update the existmg versions of the 
libraries with the new ones from this installation. Simply copy the dlls from their 
installed locations to the existing location on the target machine. This may cause 
unexpected results in the previously existmg applications dependant upon these libraries. 

2.2   Source and Configuration Files 

This option mstalls all of the files necessary to build the tool on the target 
machine. 

The configuration files depend on the existence of several environment variables. 
These variables are used by the configuration scripts to generate the makefile and also by 
the software as it runs. 

The environment variables that must be set are as follows: 



Environment Variable Description 

Metricsdir The location of the metric dlls. 
Itools The location of the ITools header files. 
Codecs The location of the codecs header files. 
QTDIR The location of the QT and QWT libraries, as well as 

the qmake utility. 

ImgMetricsLibs The location of the AnalysisCodec and Metric Base 
libraries. 

QMAKESPEC List of possible values can be found by looking in the 
QT/mkspecs directory. For example the value for 
Microsoft Visual C-H-.Net would be win32-msvc.net 

XERCES The location of the Xerces install. 

These variables must also be added to the path environment variable. 

When these pre-requisites have been met, the system specific makefiles can be 
generated using the Trolltech utility qmake. 

There are several items that must be buih before the main program, hngMetrics, 
is buih. These are the Analysis Codec, the Metric Base object, and the individual 
metrics. 

To build the AnalysisCodec, open a command prompt and navigate to the 
AnalysisCodec directory. In this directory type the command "qmake". This will 
produce the system appropriate makefile for the Analysis Codec library. Once the 
makefile has been generated build the library according to your compilers instructions. 
For example, in Microsoft Visual C-H- .Net version 2002, you would now type "nmake". 

To build the Metric Base object, navigate to tiie MetiicBase directory and perform 
the steps listed above. 

The same procedure should be repeated in the individual metric directories to 
build these libraries. The metiics are located in subdirectories under the MetricSources 
directory. It is not necessary to build all of tiie metiics. Only tiiose which you intend to 
use need to be built. 

The ImgMetiics tool can now be buih. Perform tiie steps listed above in the 
ImgMetiics directory to build the hngMetiics tool. The resulting executable will be 
called ImgMetiics.exe. To build the console version of the tool perform these steps in the 
consoleApp directory. The steps preceding tiie makefile generation and compilation of 
the main tool are the same for the GUI and console versions of the tool. Witii the one 



exception being that the console application does not need either the QT or QWT 
libraries. 

2.3   GUI Version 

This option will install a ready to run version of the GUI tool. The source files 
will not be included, the one exception being the template outlining the creation of new 
metrics. When the install is finished the following environment variables must be added 
to the system and then added to the path environment variable. These variables are: 

Metricsdir - The location of the metric dlls. 
Itools - The location of the ITools header files. 
Codecs - The location of the codecs header files. 
QTDIR - The location of the QT and QWT libraries, as well as the qmake utility. 
ImgMetricsLibs - The location of the AnalysisCodec and Metric Base libraries. 

2.4   Console Version 

This option will install the console version of the tool. The source files will not 
be mcluded. The console version does not require the graphical support provided by the 
QT and QWT libraries. Therefore the environment variables for these libraries need not 
be set with this installation. The environment variables that must be set are listed below. 

metricsdir - The location of the metric dlls. 
itools - The location of the ITools header files. 
codecs - The location of the codecs header files. 
ImgMetricsLibs - The location of the AnalysisCodec and Metric Base libraries. 

3.   Configuration 

The only configuration issues involved are the setting of the environment 
variables listed in each of the installation sections above. The individual view windows 
may be positioned as the user sees fit. 

4.   Operation 

This section will provide detail and instructions as to the operation of the 
ImgMetrics tool. There are two versions of the metric tool available, a GUI version and a 
console application. 



4.1    Console Application 

The console application is run from the command line by typing the command 
"consolelmgMetrics". The program expects operational parameters to be supplied on the 
command line. There are two ways to accomplish this. The individual parameters can be 
supplied, or the name of an XML configuration file can be supplied. The individual 
parameters expected are listed below: 

start - Frame to begin calculating. 
numFrames - Number of frames over which to iterate. 
vid - The name of the image sequence file. 
vdec - The name of the video decoder to use for this image sequence. 
gtr - The ground truth file name. 
cal - The calibration file name. 
output - The output file name. 
metric - The name of a text file containing the metrics to be calculated, one per line. 

4.2   GUI Application 

There are three main tasks associated with the GUI version of the ImgMetrics 
tool. These are analysis file creation and editing, executing the analysis, and inspecting 
the execution results. 

4.2.1    Analysis File Creation/Editing 

There are two different types of items that can be added or deleted from an 
analysis file. These are image sequences and metrics. These items appear in the 
ImgMetrics GUI along the left hand side of the main window in an expandable list. The 
image sequences appear under the main heading Analysis, while the individual metrics 
are shown under the main heading Metrics. The window containing this Ust will be 
referred to throughout the rest of this document as the Project View. There is another 
window directly below the project view, this window is used to display the individual 
sequence parameters and shall be referred to as the Property View. 

To add image sequences to the analysis select the Add menu on the menu bar. 
This is a drop down menu, when clicked three options will be presented. These are "Add 
Sequence", "Add Sequences", and "Add Metric". We will discuss the "Add Mefric" 
option a little later on. 

If "Add Sequence" is selected a data entry form will be presented. The form can 
be seen in figure 1 below. 



Add Sequence 

Sequence Filename 

Calibration Filename 

Calibration Format 

Codec Name 

Frame Count 

Frame Start 

Groundtruth Filename 

Groundtruth Format 

Output Filename 

Output Format 

aste't' 

text 

boeingcmskr 

text 

CSV 

Add Cancel 

Figure 1. ImgMetrics Add Sequence Form 

n 

This form will allow the entry of all of the information required to create a new 
sequence on which to perform metric calculation. Where file names are required, the 
data can either be typed in or the buttons to the right of the text entry fields will presented 
a navigable file selection dialog. After all of the fields have been filled in the user selects 
the add button. This will add the new sequence to the list of sequences. If cancel is 
selected, the data entered is discarded and no changes are made to the file. 

If "Add Sequences" is selected a navigable file window will be presented. An 
example of this can be seen in figure 2 below. 
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Figure 2. Add Sequences File Dialog 

The file dialog will allow the selection of multiple files. The tool will fill out the 
rest of the data for the sequence based on the file type selected. If this method of addition 
is used all of the required files must be located in the same directory as the image 
sequences. Also, the calibration file must be named the same as the parent directory with 
a ".cal" extension. This method also sets the Frame Start and Frame Count parameters to 
0. The program will determine the size of the image sequence during the metric run and 
perform the calculations over the entire sequence. 

The sequence fields may be edited individually at any time. When an individual 
sequence is selected fi-om the analysis list, the sequence parameter values are displayed in 
the Property View Window. This can be seen in figure 3. 
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Figure 3. Project and Property Views 

When the individual parameters are displayed in the Property View, they may be 
double clicked. This will produce an edit dialog for the property clicked allowing its 
value to be changed. The change can be accepted by clicking on the Accept button, or 
the changes can be discarded using the cancel button. An example of the edit property 
dialog is shown in figure 4. 

!■ Groundtruth Filename IK/''  ilM 

i     

Cancel      j ;: Accept      1 

i 

Figure 4. Property Edit Dialog 

If "Add Metric" is selected the add metrics dialog will be presented as shown m 
figures. 



Available Libraries 

Avdiable Metrics Load Selected > J 

MetricBase 
Scm 
TrkCorrMetric 
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Load All» 

< Unload Selected 

« Unload All 

JUMJIMIJI 

Loaded Metrics 

J 

OK Cancel 

Figure 5. Add Metric Dialog 

This option will allow the addition of metrics to be calculated. The list of 
available metric is populated by the metric dlls that are contained in the directory 
indicated by the METRICSDIR environment variable. To select the metrics click on the 
metric name sin the available list and hen click Load Selected. Load All will move all of 
the metrics listed in the Available section to the loaded section. Clicking OK will add the 
metric to the analysis. Cancel will discard the changes. 

Deletion of either metric or sequences can be accomplished by right clicking on 
an item in the Project View. This will present a pop up menu with the delete option. 

4.2.2   Executing the Analysis 

To execute the analysis, select the Run Analysis option on the File menu. This 
option will calculate the metrics contained in the analysis for each frame of every 
sequence in the analysis. The resuhs can be viewed at any time after the run is complete. 

The tool will show a progress bar indicating the percentage complete for the 
current sequence. If the run contains more than one sequence, a new bar is presented for 
each sequence as it runs. 

The main window remains active during the calculations. Sequences on which 
the run has completed may be viewed and the metric results inspected. If the analysis 
had been run previously, these resuhs will be overwritten by the new run, unless the 
output file name is changed. 



4.2.3   Inspecting the Execution Results 

After an analysis run is complete, or having loaded a previously run file, the 
results may be analyzed using the ImgMetrics tool. The tool provides three view of the 
data resulting form a run. These views are presented in three separate windows. These 
windows will be called the Metric Graph, the Metric Data, and the Sequence View. 
Figure 6 shows the hngMetrics tool displaying these views. 

Figure 6. ImgMetrics Tool Analysis Windows 

To begin viewing the results of an analysis run, select the desired image sequence 
from the list of sequences displayed in the Project View. When a sequence is selected, 
the sequence parameters will be displayed in the Property View, as discussed above. If 
the image sequence exists it will be displayed in the Sequence View window. If the 
analysis has already been run, and the output file exists, this data will populate the Metric 
Data window. The Graph View window will also present a list of metrics to be graphed. 

The Metric Data view shows the specific values calculated for each metric in the 
analysis. These values are the calculation results for the frame currently displayed in the 
Sequence View window. Navigation through these values is accomplished using the 
VCR type control buttons in the Sequence View window. 

The Sequence View window begins display with the first frame of the image 
sequence. From this pomt the sequence may be played, stopped, or stepped through in 



forward or reverse. There is also a scroll bar to allow the sequence to be scrolled 
through. As an image plays, the Metric Data window will refresh with the currently 
displayed frame's mefric values. If the analysis has not been run, but the sequence exists, 
it will be displayed. However no metric data will be displayed in the Metric Data 
window and the Graph window will not have any items to select for graphing. 

The Graph View window will display plots of the metric data shown over the 
range of the image sequence. There is a pale yellow vertical bar displayed in the plot 
area indicating the location of the unage frame currently displayed in the Sequence View 
window. Up to five metrics may be concurrently displayed in the graph area. Each 
metric will have a different colored line representing the values. There is a legend at the 
bottom of the Graph View indicating the color associations. 

4.2.4   Other Operations 

The ImgMetrics tool menu bar also provides for other standard fiinctions 
generally expected in applications today. The file menu provides Save, Save As, Exit, 
New and Open operations. There is also a help menu which will display this document. 

5.  New Metric Creation 

The ImgMetrics tool metric calculation capabilities are extendable through the 
addition of user defined metric calculations. These new metric may be buih upon 
currently existing metrics, or be completely original. This section will outline the process 
for creating new metric libraries for use within the tool. 

The different variations of the installation all provide a directory called 
MetricTemplate. This will be a subdirectory of the Metric Sources directory. This 
directory initially contains three files. These files are MetricTemplate.pro, 
MetricTemplate.cpp, and MetricTemplate.h. These files contain the starting point for 
creating your own metric library. 

The first step in creating your own metric is to create a sub directory under the 
MetricSources directory. Once this is done, copy the three files named above to this 
directory. Detailed directions on the changes to be made to each of the three files follow. 

5.1    MetricTemplatcpro 

This file is to be used with the qmake utility. It contains all of the information 
qmake needs to generate the appropriate makefile for the current operatmg system. To 
configure this file for use with your metric it needs to be renamed. The new file name 
should match the name of the directory just created in the step above with the .pro 
extension. When this is done, edit the file and change all occurrences of 
"MetricTemplate" to the name of your new metric. Typically this will match the name 



given to the .pro file. For example, if the .pro file were named MyMetric.pro, 
"MetricTemplate" would be changed to "MyMetric". Save and close this file. 

5.2 MetricTemplatch 

This file should also be renamed accordingly. Using the above example, it would 
be renamed to MyMetric.h. Open this file and change all occurrences of MetricTemplate 
to the name chosen for the new metric. Save and close this file. 

5.3 MetricTemplatccpp 

Following the pattern illustrated above, rename this file to match the header file. 
Continuing to use the MyMetric example this file is renamed to MyMetric.cpp. The 
occurrences of MetricTemplate in this file should be changed to match the name used in 
the header file. When this is complete save and close this file. We are now ready to run 
qmake to create the makefile for the new metric. 

5.4 Finishing Up 

Up until this point the directions have been applicable to all target platforms. 
From this point forward the directions will be specific to a platform running Microsoft 
Windows and the Microsoft Visual C-H- .Net version 2002 compiler. 

To run qmake open a command window and navigate to the directory containing 
the new metric files. In the new directory type the command qmake if you wish to build 
the library from the command line. Alternatively the command may be entered as 
follows, "qmake -t vcapp", this will create a project file with a 'Vcproj" extension for the 
new metric. This file may be opened using the C++ IDE. 

The fmal step in the process is to implement the printHeader and calculate 
methods in the source files. The printHeader method should output a comma separated 
list of the metric values you will be calculating. There should be no new line contained 
in the list. The second method to be implemented is the calculate method. This is where 
the actual calculation of the metric is to be performed. The last thing calculate should do 
is output the result of the calculation, followed by a comma. Again, no new line should 
be inserted. 

When the changes have been completed build the library by running nmake from 
the command line, or the library can be buih inside the IDE using the build command. 
When the build command is finished the new library v^U be placed in the METRICDLLS 
directory and is now available to the hngMetrics tool. The new library will appear in the 
Available Libraries list displayed by clicking the Add Mefrcis menu item in the 
ImgMetrics GUI. Good Luck and Have Fun!! 



6.  Metric Template Source 

6.1    MetricTemplatch 

// ~ 
// 
// infrared Scene Metrics Program 

// $workfi1e::  MetricTemplate.h 
$ 
// $Revision:: 1 ! 
// $Date:: 11/12/03 10:46a * 
// $Modtime:: 11/12/03 10:45a * 
//   
// ~  

// MetricTemplate is the "recipe" for creating your own metrics to use 
with the metric tool. ,  ,  ^ . ,    T  j -^u 
// All of the "MetricTemplate" keywords should be replaced with your 
class name. 

#include "MetricBase.h" 
#include <iostream> 

/** 
* implementation of RectimgMetricBase for calculating the image 
statistics. 
* calculates the scm. 
* 
* 01.0 
* ©scm.h 
V 
// DLL specifiers... 
#ifdef STATSMETRIC_BUILDDLL 

#define STATSMETRIC_DECLSPEC _declspecC dllexport ) 
#defi ne STATSMETRICL.EXPIMP 

#elif defined STATSMETRIC_DLL , ^-,-,.    ^ ^ 
#define STATSMETRIC_DECLSPEC _declspec( dllimport ) 
#define STATSMETRIC_EXPIMP extern 

#else 
#define STATSMETRIC_DECLSPEC 
#define STATSMETRIC_EXPIMP 

#endif 

class MetricTemplate : public RectimgMetricBase 

public: .        .    1 ^ 
typedef TimgMetri cClass<RectlmgMetn cBase,Metn cTemplate> 

MetaClass; . .      ^    , 
static imgMetncMetaClass* Class; 

Met ri CTempl ateO; 
-Met ri CTemplate(){}; 

/** 
* calculate the metric for the given frame using the GroundTruth 
* provided. The result is written to the file. 



* @param Tlrtiage The image 
* (aparam RectangularGroundTruth The groundtruth 
* @param OStream The output file stream 
*/ 

void pHntHeaderCstd: :ostreaiTi&); 

* calculate the metric for the given frame using the GroundTruth 
* provided. The result is written to the file. 
* 
* @param Timage The Image 
* gparam RectangularGroundTruth The groundtruth 
* ©param OStream The output file stream 

calculate(Timage<float>&,RectangularGroundTruth&,std::ostream&); 

};//End MetricTemplate 

//EOF 

6.2   MetricTemplatccpp 

//  

// infrared Scene Metrics Program 

// Sworkfile::  MetricTemplate.cpp $ 
// $Revision::  1 J 
// $Date::   11/12/03 10:46a | 
// $Modtime::   11/12/03 10:45a * 
//   //  

// This is the "recipe" for creating your own metrics to be used with 

// the "MetricTemplate" keywords should be replaced with the name of 
your class. The printheader ■ u j 
// method gets called once at object creation to put the metric header 
in the output file. The calculate        .  ,  . 
// method gets called for each frame of data in the image sequence. 
The metric calculation code goes here. , -,  . 
// private methods can also be added to provide modularity in metrics 
requiring complex or detailed 
// calculations. 

#include "MetricTemplate.h" 
#i nclude "video/VideoDecoder.h" 
#include "cpputil/cstring.h" 
#include "cpputil/TSubArray.h" 
#i nclude "cpputi1/TScalarArray.h 
#i nclude "numeri cs/StatsAlgo.h" 
#i nclude "eo_i r/RectGroundTruth.h" 
#1nclude "eo_i r/Cali bration.h" 

#1 nclude <iostream> 
#i nclude <cstdlib> 
#i nclude <algorithm> 



#inclucle <stack> 

using namespace std; 
using namespace util; 

imgMetricMetaClass* MetricTempIate::Class = 
MetricTemplate::MetaClass::instance(); 

Metri cTempIate::Metri cTempIate() 
: RectimgMetricease () 

std::cout « "MetricTemplate construct" « std::endl; 
}// end constructor   

// Print the headers to the output file 
void MetriCTempIate::printHeader(std::ostream& output) 

// TODO:   Put the print header code for the metric here. 
output « "MetricTemplate header line goes here    « std::endl;; 

}//End of printHeader   

// calcualte the metrics. 
void MetricTemplate::calculate(Timage<float>& imageFrame, 

RectangularGroundTruth& gt, 
std::ostream& output) 

// TODO: The metric calculation code goes here.     _   -,    ■,     . 
std::cout « "MetricTemplate example code,  put metnc calculation 

code here." « std::endl; 

}//End calculate   

//EOF 

6.3   Sample XML File 

<?xml version="1.0" encoding="UTF-8"?> 
<analysis> 

<sequences> 
<sequence format="ams" start_frame="l" num_frames="159"> 

<path>C:\\SBIR_Data\\AMS_FLIGHT_10\\NightTest4a.ams</path> 
<calibration format="text"> 

<path>C:\\SBIR_Data\\AMS_FLIGHT_10\\AMS_Flight_10.cal</path> 

</calibration> 
<ground-truth format="amcom"> 

<path>C:\\SBIR_Data\\AMS_FLIGHT_10\\NightTest4a.gtr</path> 

</ground-truth> 
<output format="csv" date="12-03-2003"> 

<path>C:\\users\\jninont\\projects\\metrics\\AnalysisCodecTst\\jnin 

_Stats.csv</path> 



</output> 
</sequence> 

</sequences> 
<metrics> 

<inetric>VarianceMetric</metric> 

</metrics> 
</analysis> 


